Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV.

نویسندگان

  • Yucheng Xiao
  • Songping Liang
چکیده

Hainantoxin-III and hainantoxin-IV, isolated from the venom of the Chinese bird spider Seleconosmia hainana, are neurotoxic peptides composed of 33-35 residues with three disulfide bonds. Using whole-cell patch-clamp technique, we investigated their action on ionic channels of adult rat dorsal root ganglion neurons. It was found that the two toxins did not affect Ca2+ channels (both high voltage activated and low voltage activated types) nor tetrodotoxin-resistant voltage-gated Na+ channels (VGSCs). However, hainantoxin-III and hainantoxin-IV strongly depressed the amplitude of tetrodotoxin-sensitive Na+ currents with IC50 values of 1.1 and 44.6 nM, respectively. Both hainantoxin-III (1 nM) and hainantoxin-IV (50 nM) caused a hyperpolarizing shift of about 10 mV in the voltage midpoint of steady-state Na+ channel inactivation, but they showed difference in the reprime kinetics of VGSCs: hainantoxin-III significantly decreased the recovery rate from inactivation at a prepulse potential of -80 mV while hainantoxin-IV did not do. It is interesting to note that similar to huwentoxin-IV, the two hainantoxins did not affect the activation and inactivation kinetics of Na+ currents and at a concentration of 1 microM they completely inhibited the slowing inactivation currents induced by BMK-I (toxin I from the scorpion Buthus martensi Karsch), a scorpion alpha-like toxin. The results indicate that hainantoxin-III and hainantoxin-IV are novel spider toxins and affect the mammal neural Na+ channels through a mechanism quite different from other spider toxins targeting the neural receptor site 3, such as delta-aractoxins and mu-agatoxins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana.

In the present study, we investigated the structure and function of hainantoxin-III (HNTX-III), a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. HNTX-III suppressed Nav1.7 current amplitude without significantly altering the activation, inactivation, and repriming kinetics....

متن کامل

Purification and characterization of Hainantoxin-V, a tetrodotoxin-sensitive sodium channel inhibitor from the venom of the spider Selenocosmia hainana.

A neurotoxic peptide, named Hainantoxin-V (HNTX-V), was isolated from the venom of the Chinese bird spider Selenocosmia hainana. The complete amino acid sequence of HNTX-V has been determined by Edman degradation and found to contain 35 amino acid residues with three disulfide bonds. Under whole-cell patch-clamp mode, HNTX-V was proved to inhibit the tetrodotoxin-sensitive (TTX-S) sodium curren...

متن کامل

Structure--activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers.

Hainantoxin-IV (HNTX-IV) can specifically inhibit the neuronal tetrodotoxin-sensitive sodium channels and defines a new class of depressant spider toxin. The sequence of native HNTX-IV is ECLGFGKGCNPSNDQCCKSSNLVCSRKHRWCKYEI-NH(2). In the present study, to obtain further insight into the primary and tertiary structural requirements of neuronal sodium channel blockers, we determined the solution ...

متن کامل

An Efficient Strategy for Heterologous Expression and Purification of Active Peptide Hainantoxin-IV

Hainantoxin-IV (HNTX-IV) from the venom of the spider Selenocosmia hainana is a potent antagonist that specifically inhibits the tetrodotoxin-sensitive (TTX-S) sodium channels. The toxin peptide consists of 35 amino acids and adopts a typical inhibitory cystine knot (ICK) motif. To obtain adequate HNTX-IV peptides for further insight into the structure-activity relationships of the toxin, a nov...

متن کامل

The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of pharmacology

دوره 477 1  شماره 

صفحات  -

تاریخ انتشار 2003